Restoring Anticancer Immune Response by Targeting Tumor-Derived Exosomes With a HSP70 Peptide Aptamer.
نویسندگان
چکیده
BACKGROUND Exosomes, via heat shock protein 70 (HSP70) expressed in their membrane, are able to interact with the toll-like receptor 2 (TLR2) on myeloid-derived suppressive cells (MDSCs), thereby activating them. METHODS We analyzed exosomes from mouse (C57Bl/6) and breast, lung, and ovarian cancer patient samples and cultured cancer cells with different approaches, including nanoparticle tracking analysis, biolayer interferometry, FACS, and electron microscopy. Data were analyzed with the Student's t and Mann-Whitney tests. All statistical tests were two-sided. RESULTS We showed that the A8 peptide aptamer binds to the extracellular domain of membrane HSP70 and used the aptamer to capture HSP70 exosomes from cancer patient samples. The number of HSP70 exosomes was higher in cancer patients than in healthy donors (mean, ng/mL ± SD = 3.5 ± 1.7 vs 0.17 ± 0.11, respectively, P = .004). Accordingly, all cancer cell lines examined abundantly released HSP70 exosomes, whereas "normal" cells did not. HSP70 had higher affinity for A8 than for TLR2; thus, A8 blocked HSP70/TLR2 association and the ability of tumor-derived exosomes to activate MDSCs. Treatment of tumor-bearing C57Bl/6 mice with A8 induced a decrease in the number of MDSCs in the spleen and inhibited tumor progression (n = 6 mice per group). Chemotherapeutic agents such as cisplatin or 5FU increase the amount of HSP70 exosomes, favoring the activation of MDSCs and hampering the development of an antitumor immune response. In contrast, this MDSC activation was not observed if cisplatin or 5FU was combined with A8. As a result, the antitumor effect of the drugs was strongly potentiated. CONCLUSIONS A8 might be useful for quantifying tumor-derived exosomes and for cancer therapy through MDSC inhibition.
منابع مشابه
Correction: peptides and aptamers targeting HSP70: a novel approach for anticancer chemotherapy.
The inhibition of heat shock protein 70 (HSP70) is an emerging strategy in cancer therapy. Unfortunately, no specific inhibitors are clinically available. By yeast two-hybrid screening, we have identified multiple peptide aptamers that bind HSP70. When expressed in human tumor cells, two among these peptide aptamers-A8 and A17-which bind to the peptide-binding and the ATP-binding domains of HSP...
متن کاملEffects of the epigenetic drug MS-275 on the release and function of exosome-related immune molecules in hepatocellular carcinoma cells
BACKGROUND Tumor-derived exosomes have been viewed as a source of tumor antigens that can be used to induce anti-tumor immune responses. In the current study, we aim to investigate the regulatory effect of the epigenetic drug MS-275 on hepatoma G2 (HepG2) cell-derived exosomes, especially for their immunostimulatory properties and alteration of some non-specific immune protein expression, such ...
متن کاملDendritic cell-derived exosomes as immunotherapies in the fight against cancer.
Exosomes are nanometric membrane vesicles of late endosomal origin released by most, if not all, cell types as a means of sophisticated intercellular communication. A multitude of studies showed how exosomes can mediate and regulate immune responses against tumors. Dendritic cell-derived exosomes (Dex) have received much attention as immunotherapeutic anticancer agents since the discovery that ...
متن کاملA phase I/II clinical trial for adult recurrent glioma using 131i-tm-601, an iodinated peptide derived from scorpion venom
131I-TM-601 is a 36-amino acid peptide, called chlorotoxin (TM-601), derived from scorpion venom labeled with I-131. TM-601 binds a receptor on the surface of tumor cells, and not on normal cells. A single dose of 131I-TM-601 administered intracranially to human xenografted mouse models of glioma has been shown to extend survival up to 269% in multiple studies. 131I-TM-601 is in a multi-center ...
متن کاملA phase I/II clinical trial for adult recurrent glioma using 131i-tm-601, an iodinated peptide derived from scorpion venom
131I-TM-601 is a 36-amino acid peptide, called chlorotoxin (TM-601), derived from scorpion venom labeled with I-131. TM-601 binds a receptor on the surface of tumor cells, and not on normal cells. A single dose of 131I-TM-601 administered intracranially to human xenografted mouse models of glioma has been shown to extend survival up to 269% in multiple studies. 131I-TM-601 is in a multi-center ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the National Cancer Institute
دوره 108 3 شماره
صفحات -
تاریخ انتشار 2016